Affiliation:
1. From the Bone Marrow Transplant Service, Department of Pediatrics, Memorial Hospital; Gene Transfer and Somatic Cell Engineering Facility; Department of Human Genetics; and Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY.
Abstract
Abstract
Infusions of donor peripheral blood T cells can induce durable remissions of Epstein-Barr virus (EBV) lymphomas complicating marrow grafts, but they contain alloreactive T cells capable of inducing graft-versus-host disease. EBV-specific T-cell lines or clones avoid this problem but require 30 to 40 days of culture to establish. To accelerate the generation of EBV-specific T cells, we tested whether retroviral vectors, which only integrate in dividing cells, could be used to transduce and select antigen-reactive T cells early after sensitization to autologous EBV-transformed B cells. T cells were transduced with a dicistronic retroviral vector, NIT, which encodes low-affinity nerve growth factor receptor as an immunoselectable marker and herpes simplex virus thymidine kinase as a suicide gene, at different time points after sensitization. EBV-specific cytotoxic T lymphocyte precursor (CTLp) frequencies in purified NIT+T-cell fractions transduced on day 8 of culture were comparable to those of EBV-specific T-cell lines cultured for 30 days or more. Alloreactive CTLp frequencies were markedly reduced in the NIT+ fraction relative to the untransduced T-cell population. NIT+ fractions transduced on day 8 possessed more CD4+ T cells than the cell lines at day 30 and exhibited the same selective pattern of reactivity against immunodominant antigens presented by specific HLA alleles. In contrast, T cells transduced with NIT 5 days after stimulation with mitogen and interleukin-2 were relatively depleted of T cells specific for autologous EBV-transformed cells. Thus, retroviral vectors may be used for rapid selection of viral antigen-reactive T cells depleted of alloreactive T cells.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献