A novel von Willebrand disease–causing mutation (Arg273Trp) in the von Willebrand factor propeptide that results in defective multimerization and secretion

Author:

Allen Simon1,Abuzenadah Adel M.1,Hinks Joanna1,Blagg Joanna L.1,Gursel Turkiz1,Ingerslev Jørgen1,Goodeve Anne C.1,Peake Ian R.1,Daly Martina E.1

Affiliation:

1. From the Division of Molecular and Genetic Medicine, Royal Hallamshire Hospital, University of Sheffield, UK; the Medical School of Gazi University, Ankara, Turkey; and the University Hospital of Skejby, Aarhus, Denmark.

Abstract

AbstractIn this report we describe the molecular defect underlying partial and severe quantitative von Willebrand factor (VWF) deficiencies in 3 families previously diagnosed with types 1 and 3 Von Willebrand-disease. Analysis of the VWF gene in affected family members revealed a novel C to T transition at nucleotide 1067 of the VWF complemetary DNA (cDNA), predicting substitution of arginine by tryptophan at amino acid position 273 (R273W) of pre–pro-VWF. Two patients, homozygous for the R273W mutation, had a partial VWF deficiency (VWF:Ag levels of 0.06 IU/mL and 0.09 IU/mL) and lacked high-molecular weight VWF multimers in plasma. A third patient, also homozygous for the R273W mutation, had a severe VWF deficiency (VWF:Ag level of less than 0.01 IU/mL) and undetectable VWF multimers in plasma. Recombinant VWF having the R273W mutation was expressed in COS-7 cells. Pulse-chase experiments showed that secretion of rVWFR273W was severely impaired compared with wild-type rVWF. However, the mutation did not affect the ability of VWF to form dimers in the endoplasmic reticulum (ER). Multimer analysis showed that rVWFR273W failed to form high-molecular-weight multimers present in wild-type rVWF. We concluded that the R273W mutation is responsible for the quantitative VWF deficiencies and aberrant multimer patterns observed in the affected family members. To identify factors that may function in the intracellular retention of rVWFR273W, we investigated the interactions of VWF expressed in COS-7 cells with molecular chaperones of the ER. The R273W mutation did not affect the ability of VWF to bind to BiP, Grp94, ERp72, calnexin, and calreticulin in COS-7 cells.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3