Lack of dominant-negative effects of a truncated γc on retroviral-mediated gene correction of immunodeficient mice

Author:

Otsu Makoto1,Sugamura Kazuo1,Candotti Fabio1

Affiliation:

1. From the Clinical Gene Therapy Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD; and the Department of Microbiology and Immunology, Tohoku University School of Medicine, Sendai, Japan.

Abstract

A recent clinical trial of gene therapy for X-linked severe combined immunodeficiency (XSCID) has shown that retroviral-mediated gene correction of bone marrow stem cells can lead to the development of normal immune function. These exciting results have been preceded by successful immune reconstitution in several XSCID mouse models, all carrying null mutations of the common gamma chain (γc). One question not formally addressed by these previous studies is that of possible dominant-negative effects of the endogenous mutant γc protein on the activity of the wild-type transferred gene product. The present work was therefore undertaken to study whether corrective gene transfer was applicable to an XSCID murine model with preserved expression of a truncated γc molecule (Δγc+-XSCID). Gene correction of Δγc+-XSCID mice resulted in the reconstitution of lymphoid development, and preferential repopulation of lymphoid organs by gene-corrected cells demonstrated the selective advantage of γc-expressing cells in vivo. Newly developed B cells showed normalization of lipopolysaccharide-mediated proliferation and interleukin-4 (IL-4)–induced immunoglobulin G1 isotype switching. Splenic T cells and thymocytes of treated animals proliferated normally to mitogens and responded to the addition of IL-2, IL-4, and IL-7, indicating functional reconstitution of γc-sharing receptors. Repopulated thymi showed a clear increase of CD4−/CD8− and CD8+fractions, both dramatically reduced in untreated Δγc+-XSCID mice. These improvements were associated with the restoration of Bcl-2 expression levels and enhanced cell survival. These data indicate that residual expression of the endogenous truncated γc did not lead to dominant-negative effects in this murine model and suggest that patient selection may not be strictly necessary for gene therapy of XSCID.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3