Expression of Wiskott-Aldrich Syndrome Protein (WASP) Gene During Hematopoietic Differentiation

Author:

Parolini Ornella1,Berardelli Stefania1,Riedl Elisabeth1,Bello-Fernandez Concha1,Strobl Herbert1,Majdic Otto1,Knapp Walter1

Affiliation:

1. From the Institute of Immunology-Vienna International Research Cooperation Center (VIRCC) at Sandoz Forschungsinstitut (SFI) and the Institute of Immunology, University of Vienna, Vienna, Austria.

Abstract

Abstract The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder described as a clinical triad of thrombocytopenia, eczema, and immunodeficiency. The gene responsible for WAS encodes a 502-amino acid proline-rich protein (WASp) that is likely to play a role in the cytoskeleton reorganization and/or in signal transduction of hematopoietic cells. However, the function and the regulation of the WAS gene (WASP) have not yet been clearly defined. We have studied WASP expression at the transcriptional level in freshly isolated mature peripheral blood cells and during hematopoietic development. For this purpose, we have isolated CD34+ hematopoietic precursor cells from cord blood. These cells were cultured in vitro with various growth factors to generate committed or mature cells belonging to different hematopoietic differentiation pathways, such as granulocytic (CD15+) cells, monocytic (CD14+) cells, dendritic (CD1a+) cells, erythroid lineage (glycophorin A+) cells, and megakaryocytic cells (CD41+). We have shown by reverse transcriptase polymerase chain reaction analysis that the WASP transcript is ubiquitously detectable throughout differentiation from early hematopoietic progenitors, including CD34+CD45RA− and CD34+CD45RA+ cells, to cells belonging to different hematopoietic lineages, including erythroid-committed and dendritic cells. In addition, Northern blot analysis showed that peripheral blood circulating lymphocytes (CD3+ and CD19+ cells) and monocytes express WASP mRNA. Several hematopoietic cell lines were tested and higher levels of expression were consistently detected in myelomonocytic cell types. By contrast, primary nonhematopoietic cells, including fibroblasts, endothelial cells, and keratinocytes, were consistently negative for WASP mRNA.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3