During ontogeny primitive (CD34+CD38−) hematopoietic cells show altered expression of a subset of genes associated with early cytokine and differentiation responses of their adult counterparts

Author:

Oh Il-Hoan1,Lau Aster1,Eaves Connie J.1

Affiliation:

1. From the Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.

Abstract

Abstract Comparison of gene expression profiles in closely related subpopulations of primitive hematopoietic cells offers a powerful first step to elucidating the molecular basis of their different biologic properties. Here we present the results of a comparative quantitative analysis of transcript levels for various growth factor receptors, ligands, and transcription factor genes in CD34+CD38− and CD34+CD38+ cells purified from first trimester human fetal liver, cord blood, and adult bone marrow (BM). In addition, adult BM CD34+CD38− cells were examined after short-term exposure to various growth factors in vitro. Transcripts for 19 of the 24 genes analyzed were detected in unmanipulated adult BM CD34+CD38− cells. Moreover, the levels of transforming growth factor beta (TGF-β), gp130, c-fos, and c-jun transcripts in these cells were consistently and significantly different (higher) than in all other populations analyzed, including phenotypically similar but biologically different cells from fetal or neonatal sources, as well as adult BM CD34+ cells still in G0 after 2 days of growth factor stimulation. We have thus identified a subset of early response genes whose expression in primitive human hematopoietic cells is differently regulated during ontogeny and in a fashion that is recapitulated in growth factor-stimulated adult BM CD34+CD38− cells, before their cell cycle progression and independent of their subsequent differentiation response. These findings suggest a progressive alteration in the physiology of primitive hematopoietic cells during development such that these cells initially display a partially “activated” state, which is not maximally repressed until after birth.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3