Affiliation:
1. From the Department of Internal Medicine I, Division of Hematology, Department of Clinical Chemistry and Laboratory Medicine, and Department of Pathology, University of Vienna, Vienna, Austria; and the Department of Medicine II, University of Kiel, Kiel, Germany.
Abstract
Abstract
The human t(14;18) chromosomal translocation is assumed to result from illegitimate rearrangement between BCL-2 and DH/JH gene segments during V(D)J recombination in early B cells. De novo nucleotides are found inserted in most breakpoints and have been thus far interpreted as nontemplated N region additions. In this report, we have analyzed both direct (BCL-2/JH) and reciprocal (DH/BCL-2) breakpoints derived from 40 patients with follicular lymphoma with t(14;18). Surprisingly, we found that more than 30% of the breakpoint junctions contain a novel type of templated nucleotide insertions, consisting of short copies of the surrounding BCL-2, DH, and JH sequences. The features of these templated nucleotides, including multiplicity of copies for 1 template and the occurrence of mismatches in the copies, suggest the presence of a short-patch DNA synthesis, templated and error-prone. In addition, our analysis clearly shows that t(14;18) occurs during a very restricted window of B-cell differentiation and involves 2 distinct mechanisms: V(D)J recombination, mediating the breaks on chromosome 14 during an attempted secondary DH to JH rearrangement, and an additional unidentified mechanism creating the initial breaks on chromosome 18. Altogether, these data suggest that the t(14;18) translocation is a more complex process than previously thought, involving the interaction and/or subversion of V(D)J recombination with multiple enzymatic machineries.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献