BCR-ABL–induced adhesion defects are tyrosine kinase–independent

Author:

Wertheim Jason A.1,Forsythe Kevin1,Druker Brian J.1,Hammer Daniel1,Boettiger David1,Pear Warren S.1

Affiliation:

1. From the Department of Bioengineering, Institute for Medicine and Engineering, Department of Pathology and Laboratory Medicine, and Department of Microbiology, University of Pennsylvania, Philadelphia; and Division of Hematology and Medical Oncology, Department of Cell and Developmental Biology and Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland.

Abstract

The t(9;22) chromosomal translocation results in expression of P210BCR-ABL, a fusion protein necessary for the development of chronic myelogenous leukemia (CML). The constitutive activation of the P210BCR-ABL tyrosine kinase results in phosphorylation of multiple signaling pathways leading to the transformed phenotype. Additionally, extracellular interactions between P210BCR-ABL–expressing progenitor cells and bone marrow stroma may provide external signals that facilitate CML development. In contrast to the intracellular signaling pathways involved in CML, little is known about how P210BCR-ABLexpression modifies cell-cell and cell-substratum interactions. To investigate the role of P210BCR-ABL in modulating cellular adhesion, we used a highly sensitive and quantitative cell detachment apparatus that measures the strength of association between a population of cells and an adhesive matrix. Our findings show that P210BCR-ABL expression increased adhesion nearly 2-fold between the myeloblastic cell line, 32D, and fibronectin compared to a control vector. We then investigated whether abnormal adhesion due to P210BCR-ABL expression was caused by its tyrosine kinase activity. A quantitative analysis of cell-fibronectin adhesion found that neither expression of a kinase-inactive P210BCR-ABL mutant in 32D cells or attenuation of kinase activity by STI571 (imatinib mesylate) in 32D cells transduced with wild-type P210BCR-ABL could correct the nearly 2-fold increase in cell-fibronectin adhesion. Similarly, STI571 treatment of Meg-01 cells, a P210BCR-ABL–expressing cell line derived from a patient in blast crisis, failed to inhibit adhesion to fibronectin. Together, our results indicate that changes in adhesion induced by P210BCR-ABL are independent of its tyrosine kinase activity.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3