P-selectin mediates the adhesion of sickle erythrocytes to the endothelium

Author:

Matsui Neil M.1,Borsig Lubor1,Rosen Steven D.1,Yaghmai Mitra1,Varki Ajit1,Embury Stephen H.1

Affiliation:

1. From the Departments of Pediatrics and Medicine, San Francisco General Hospital, Departments of Pediatrics, Medicine and Anatomy, University of California, San Francisco, Center for Biomedical Laboratory Sciences, San Francisco State University, and the Northern California Comprehensive Sickle Cell Center, San Francisco; and Glycobiology Research and Training Center, University of California, San Diego, La Jolla.

Abstract

AbstractThe adherence of sickle red blood cells (RBCs) to the vascular endothelium may contribute to painful vaso-occlusion in sickle cell disease. Sickle cell adherence involves several receptor-mediated processes and may be potentiated by the up-regulated expression of adhesion molecules on activated endothelial cells. Recent results showed that thrombin rapidly increases the adhesivity of endothelial cells for sickle erythrocytes. The current report presents the first evidence for the novel adhesion of normal and, to a greater extent, sickle RBCs to endothelial P-selectin. Studies of the possible interaction of erythrocytes with P-selectin revealed that either P-selectin blocking monoclonal antibodies or sialyl Lewis tetrasaccharide inhibits the enhanced adherence of normal and sickle cells to thrombin-treated endothelial cells. Both RBC types also adhere to immobilized recombinant P-selectin. Pretreating erythrocytes with sialidase reduces their adherence to activated endothelial cells and to immobilized recombinant P-selectin. Herein the first evidence is presented for the binding of normal or sickle erythrocytes to P-selectin. This novel finding suggests that P-selectin inhibition be considered as a potential approach to therapy for the treatment of painful vaso-occlusion in sickle cell disease.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 197 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3