Differential expression and phosphorylation of distinct STAT3 proteins during granulocytic differentiation

Author:

Hevehan Diane L.1,Miller William M.1,Papoutsakis Eleftherios T.1

Affiliation:

1. From the Department of Chemical Engineering, Northwestern University, Evanston, IL.

Abstract

External stimuli act in concert with intracellular signals to regulate a cell's genetic program, activating genes important in granulocytic lineage commitment, proliferation, and maturation. Signal transducer and activator of transcription 3 (STAT3), a transcription factor, has been implicated in mediating granulocytic differentiation. We have examined the role of STAT3 as a physiologic mediator of granulocytic kinetics. Distinct isoforms—the long form STAT3α, the truncated forms STAT3β and STAT3γ, and a putative novel form STAT3δ—were expressed and activated in a maturation stage–specific manner. With the progression of differentiation, the ratio of isoforms shifted from predominantly STAT3α to STAT3β. The kinetics of STAT3γ, generated through proteolytic cleavage of STAT3α, coincided with but were inverse to those of STAT3α. STAT3δ was expressed at low levels and decreased with differentiation but was preferentially phosphorylated during an intermediate stage of maturation. Under different culture conditions (pH, O2 tension [pO2], IL-3), we found that the expression and phosphorylation status of the different STAT3 isoforms displayed unique kinetic patterns that correlated with the effects on granulocyte differentiation. The evidence suggests that signals triggered by pH, pO2, and IL-3 each converge on STAT3 through independent mechanisms, exploiting the flexibility granted by the diversity in expression and phosphorylation of the different STAT3 isoforms, to regulate distinct granulocytic cell responses. The selective expression of STAT3 isoforms and their activation is a major determinant of granulocytic cell development and provides a molecular basis for evaluating the effects of various environmental factors on the STAT3-mediated signaling pathway.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery;Journal of Experimental & Clinical Cancer Research;2024-01-20

2. Natural bioactive compounds and STAT3 against hepatocellular carcinoma: An update;Life Sciences;2024-01

3. ANGPTL4 binds to the leptin receptor to regulate ectopic bone formation;Proceedings of the National Academy of Sciences;2023-12-26

4. MODERN MARKERS OF OSTEODYSMETABOLIC SYNDROME;Актуальні проблеми сучасної медицини: Вісник Української медичної стоматологічної академії;2023-05-23

5. Discovery of STAT3 Inhibitors: Recent Advances and Future Perspectives;Current Medicinal Chemistry;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3