Expression of a Knocked-In AML1-ETO Leukemia Gene Inhibits the Establishment of Normal Definitive Hematopoiesis and Directly Generates Dysplastic Hematopoietic Progenitors

Author:

Okuda Tsukasa1,Cai Zhongling1,Yang Shouli1,Lenny Noel1,Lyu Chuhl-joo1,van Deursen Jan M.A.1,Harada Hironori1,Downing James R.1

Affiliation:

1. From the Departments of Pathology and Laboratory Medicine, Tumor Cell Biology, and Genetics, St Jude Children's Research Hospital, Memphis, TN.

Abstract

AbstractThe t(8;21)-encoded AML1-ETO chimeric product is believed to be causally involved in up to 15% of acute myelogenous leukemias through an as yet unknown mechanism. To directly investigate the role of AML1-ETO in leukemogenesis, we used gene targeting to create anAML1-ETO “knock-in” allele that mimics the t(8;21). Unexpectedly, embryos heterozygous for AML1-ETO(AML1-ETO/+) died around E13.5 from a complete absence of normal fetal liver–derived definitive hematopoiesis and lethal hemorrhages. This phenotype was similar to that seen following homozygous disruption of either AML1 orCBFβ. However, in contrast to AML1- or CBFβ-deficient embryos, fetal livers from AML1-ETO/+ embryos contained dysplastic multilineage hematopoietic progenitors that had an abnormally high self-renewal capacity in vitro. To further document the role of AML1-ETO in these growth abnormalities, we used retroviral transduction to express AML1-ETO in murine adult bone marrow–derived hematopoietic progenitors. AML1-ETO–expressing cells were again found to have an increased self-renewal capacity and could be readily established into immortalized cell lines in vitro. Taken together, these studies suggest that AML1-ETO not only neutralizes the normal biologic activity of AML1 but also directly induces aberrant hematopoietic cell proliferation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3