Mechanism and Kinetics of Factor VIII Inactivation: Study With an IgG4 Monoclonal Antibody Derived From a Hemophilia A Patient With Inhibitor

Author:

Jacquemin Marc G.1,Desqueper Benoı̂t G.1,Benhida Abdellah1,Vander Elst Luc1,Hoylaerts Marc F.1,Bakkus Marleen1,Thielemans Kris1,Arnout Jef1,Peerlinck Kathelijne1,Gilles Jean Guy G.1,Vermylen Jos1,Saint-Remy Jean-Marie R.1

Affiliation:

1. From the Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium; and the Department of Hematology-Immunology, Vrije Universiteit Brussels, Brussels, Belgium.

Abstract

AbstractThe development of an immune response towards factor VIII (fVIII) remains a major complication for hemophilia A patients receiving fVIII infusions. The design of a specific therapy to restore unresponsiveness to fVIII has been hampered by the diversity of the anti-fVIII antibody. Molecular analysis of the specific immune response is therefore required. To this end, we have characterized an fVIII-specific human IgG4κ monoclonal antibody (BO2C11) produced by a cell line derived from the memory B-cell repertoire of a hemophilia A patient with inhibitor. BO2C11 recognizes the C2 domain of fVIII and inhibits its binding to both von Willebrand factor (vWF) and phospholipids. It completely inhibits the procoagulant activity of native and activated fVIII, with a specific activity of approximately 7,000 Bethesda units/mg. vWF reduces the rate of fVIII inactivation by BO2C11. The antibody-fVIII association rate constant (kass ∼7.4 × 105M−1 s−1) is eightfold lower than that for vWF-fVIII association, whereas its dissociation rate constant (kdiss ≤1 × 10−5s−1) is 100-fold lower than that for the vWF-fVIII complex, which suggests that BO2C11 almost irreversibly neutralizes fVIII after its dissociation from vWF. BO2C11 is the first human monoclonal anti-fVIII IgG antibody that has been isolated and allows the study of fVIII inactivation at the molecular level.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3