Molecular identification of Knops blood group polymorphisms found in long homologous region D of complement receptor 1

Author:

Moulds Joann M.1,Zimmerman Peter A.1,Doumbo Ogobara K.1,Kassambara Lalla1,Sagara Issaka1,Diallo Dapa A.1,Atkinson John P.1,Krych-Goldberg Malgorzata1,Hauhart Richard E.1,Hourcade Dennis E.1,McNamara David T.1,Birmingham Daniel J.1,Rowe J. Alexandra1,Moulds John J.1,Miller Louis H.1

Affiliation:

1. From the University of Texas–Houston Medical School, Houston; Case Western Reserve University, Cleveland, OH; University of Mali, Bamako, Mali; Washington University School of Medicine, St. Louis, MO; The Ohio State University, Columbus; University of Edinburgh, Scotland; Ortho Clinical Diagnostics, Raritan, NJ; and National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD.

Abstract

AbstractComplement receptor 1 (CR1) has been implicated in rosetting of uninfected red blood cells to Plasmodium falciparum–infected cells, and rosette formation is associated with severe malaria. The Knops blood group (KN) is located on CR1 and some of these antigens, ie, McCoy (McC) and Swain-Langley (Sla), show marked frequency differences between Caucasians and Africans. Thus, defining the molecular basis of these antigens may provide new insight into the mechanisms of P falciparummalaria. Monoclonal antibody epitope mapping and serologic inhibition studies using CR1 deletion constructs localized McC and Slato long homologous repeat D of CR1. Direct DNA sequencing of selected donors identified several single nucleotide polymorphisms in exon 29 coding for complement control protein modules 24 and 25. Two of these appeared to be blood group specific: McC associated with K1590E and Sla with R1601G. These associations were confirmed by inhibition studies using allele-specific mutants. A sequence-specific oligonucleotide probe hybridization assay was developed to genotype several African populations and perform family inheritance studies. Concordance between the 1590 mutation and McC was 94%; that between Sla and 1601 was 88%. All but 2 samples exhibiting discrepancies between the genotype and phenotype were found to be due to low red cell CR1 copy numbers, low or absent expression of some alleles, or heterozygosity combined with low normal levels of CR1. These data further explain the variability observed in previous serologic studies of CR1 and show that DNA and protein-based genetic studies will be needed to clarify the role of the KN antigens in malaria.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3