PKM2 promotes neutrophil activation and cerebral thrombo-inflammation: Therapeutic implications for ischemic stroke

Author:

Dhanesha Nirav1ORCID,Patel Rakesh B.1ORCID,Doddapattar Prakash2ORCID,Ghatge Madankumar1,Flora Gagan D1,Jain Manish3,Thedens Daniel1ORCID,Olalde Heena1,Kumskova Mariia1,Leira Enrique1,Chauhan Anil K1ORCID

Affiliation:

1. University of Iowa, Iowa city, Iowa, United States

2. Hematology, Oncology and Blood and Marrow Transplantation, Iowa city, Iowa, United States

3. University of Iowa, Iowa, Iowa, United States

Abstract

There is a critical need for cerebroprotective interventions to improve the suboptimal outcomes of patients with ischemic stroke treated with reperfusion strategies. We found that nuclear pyruvate kinase muscle 2 (PKM2), a modulator of systemic inflammation, was upregulated in neutrophils after the onset of ischemic stroke both in humans and in mice. Therefore, we determined the role of PKM2 in stroke pathogenesis utilizing murine models with preexisting comorbidities. We generated novel myeloid cell-specific PKM2-/- mice on wild-type (PKM2fl/flLysMCre+) and hyperlipidemic background (PKM2fl/flLysMCre+Apoe-/-). Controls were littermate PKM2fl/flLysMCre- or PKM2fl/flLysMCre-Apoe-/- mice. Genetic deletion of PKM2 in myeloid cells limited inflammatory response in peripheral neutrophils and reduced neutrophil extracellular traps following cerebral ischemia/reperfusion, suggesting PKM2 promotes neutrophil hyperactivation in the setting of stroke. In the filament and autologous clot/rtPA stroke models, irrespective of sex, deletion of PKM2 in myeloid cells either in wild-type or hyperlipidemic mice reduced infarcts and enhanced long-term sensorimotor recovery. Laser speckle imaging revealed improved regional cerebral blood flow in myeloid cell-specific PKM2-deficient mice that was concomitant with reduced post-ischemic cerebral thrombo-inflammation (intracerebral fibrin(ogen), platelet (CD41-positive) deposition, neutrophil infiltration, and inflammatory cytokines). Mechanistically, PKM2 regulates post-ischemic inflammation in peripheral neutrophils by promoting STAT3 phosphorylation. To enhance the translational significance, we inhibited PKM2 nuclear translocation using a small molecule and found significantly reduced neutrophil hyperactivation and improved short-term and long-term functional outcomes following stroke. Collectively, these findings identify PKM2 as a novel therapeutic target to improve brain salvage and recovery following reperfusion.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3