Dietary iron restriction protects against vaso-occlusion and organ damage in murine sickle cell disease

Author:

Li Huihui12ORCID,Kazmi Jacob S.1,Lee Sungkyun1,Zhang Dachuan1ORCID,Gao Xin1ORCID,Maryanovich Maria1ORCID,Torres Lidiane1ORCID,Verma Divij1ORCID,Kelly Libusha23ORCID,Ginzburg Yelena Z.4ORCID,Frenette Paul S.1ORCID,Manwani Deepa5ORCID

Affiliation:

1. 1Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY

2. 2Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY

3. 3Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY

4. 4The Tisch Cancer Institute, Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY

5. 5The Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY

Abstract

Abstract Sickle cell disease (SCD) is an inherited disorder resulting from a β-globin gene mutation, and SCD patients experience erythrocyte sickling, vaso-occlusive episodes (VOE), and progressive organ damage. Chronic hemolysis, inflammation, and repeated red blood cell transfusions in SCD can disrupt iron homeostasis. Patients who receive multiple blood transfusions develop iron overload, and another subpopulation of SCD patients manifest iron deficiency. To elucidate connections between dietary iron, the microbiome, and SCD pathogenesis, we treated SCD mice with an iron-restricted diet (IRD). IRD treatment reduced iron availability and hemolysis, decreased acute VOE, and ameliorated chronic organ damage in SCD mice. Our results extend previous studies indicating that the gut microbiota regulate disease in SCD mice. IRD alters microbiota load and improves gut integrity, together preventing crosstalk between the gut microbiome and inflammatory factors such as aged neutrophils, dampening VOE, and organ damage. These findings provide strong evidence for the therapeutic potential of manipulating iron homeostasis and the gut microbiome to ameliorate SCD pathophysiology. Many treatments, which are under development, focus on lowering the systemic iron concentration to relieve disease complications, and our data suggest that iron-induced changes in microbiota load and gut integrity are related- and novel-therapeutic targets.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3