Predicting Medical Event Occurrence Using Medical Insurance Claims Big Data

Author:

Yoshimoto Hiromasa1ORCID,Mitsutake Naohiro2,Goda Kazuo1

Affiliation:

1. Institute of Industrial Science, The University of Tokyo, Japan

2. Institute for Health Economics and Policy, Japan

Abstract

Medical events are often infrequent, thus becomes hard to predict. In this paper, we focus on predictor that forecasts whether a medical event would occur in the next year, and analyzes the impact of event’s frequency and data size via predictor’s performance. In the experiment, we made 1572 predictors for medical events using Medical Insurance Claims (MICs) data from 800,000 participants and 205.8 million claims over 8 years. The result revealed that (a) forecasting error will be increased when predicting low-frequency events, and (b) increasing the number of training dataset reduces errors. This result suggests that increasing data size is a key to solve low frequency problems. However, we still need additional methods to cope with sparse and imbalanced data.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3