Performance Comparison of Particle Swarm Optimization and Genetic Algorithm Combined with A* Search for Solving Facility Layout Problem

Author:

Besbes Mariem1,Zolghadri Marc1,Costa Affonso Roberta1,Masmoudi Faouzi2,Haddar Mohamed2

Affiliation:

1. Quartz laboratory, Supmeca, 93407 Saint-Ouen-France

2. LA2MP laboratory, ENIS 3038, Sfax-Tunisie

Abstract

Optimization metaheuristics have become necessary due to the growing demand for better and more realistic designs. This paper proposes a metaheuristic-based approach for solving design problems in a reasonable time while browsing large spaces of solutions. The objective of this article is to compare the performance of two methods Genetic Algorithm GA and Particle swarm optimization PSO, combined with A* algorithm, in solving a constrained facility layout problem. The two chosen metaheuristics have been successfully applied in many search problems. We consider their speed and performance. The performance of the obtained solutions is measured in terms of the total distance traveled by products in the workshop. In order to determine the shortest path in a realistic way between workstations in a given irregular area (with aisle structure, or material storage areas, lunchrooms and offices), the A* algorithm was integrated with them. The comparison therefore concerns <GA, A*> and <PSO, A*>. GA and PSO algorithms generate configurations for which the shortest path for any couple of machines is identified through the A* search algorithm taking into account of obstacles. The mathematical model used and the parameters of the genetic algorithm are those developed in (Besbes et al. 2019). The numerical results show the feasibility and effectiveness of both approaches. Our results demonstrate that GA yields a better solution than Particle Swarm Optimization in total distance travelled while PSO is faster.

Publisher

IOS Press

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3