Assessment of artificial intelligence-aided reading in the detection of nasal bone fractures

Author:

Yang Cun1,Yang Lei2,Gao Guo-Dong2,Zong Hui-Qian1,Gao Duo2

Affiliation:

1. Department of Medical Equipment, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China

2. Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China

Abstract

BACKGROUND: Artificial intelligence (AI) technology is a promising diagnostic adjunct in fracture detection. However, few studies describe the improvement of clinicians’ diagnostic accuracy for nasal bone fractures with the aid of AI technology. OBJECTIVE: This study aims to determine the value of the AI model in improving the diagnostic accuracy for nasal bone fractures compared with manual reading. METHODS: A total of 252 consecutive patients who had undergone facial computed tomography (CT) between January 2020 and January 2021 were enrolled in this study. The presence or absence of a nasal bone fracture was determined by two experienced radiologists. An AI algorithm based on the deep-learning algorithm was engineered, trained and validated to detect fractures on CT images. Twenty readers with various experience were invited to read CT images with or without AI. The accuracy, sensitivity and specificity with the aid of the AI model were calculated by the readers. RESULTS: The deep-learning AI model had 84.78% sensitivity, 86.67% specificity, 0.857 area under the curve (AUC) and a 0.714 Youden index in identifying nasal bone fractures. For all readers, regardless of experience, AI-aided reading had higher sensitivity ([94.00 ± 3.17]% vs [83.52 ± 10.16]%, P< 0.001), specificity ([89.75 ± 6.15]% vs [77.55 ± 11.38]%, P< 0.001) and AUC (0.92 ± 0.04 vs 0.81 ± 0.10, P< 0.001) compared with reading without AI. With the aid of AI, the sensitivity, specificity and AUC were significantly improved in readers with 1–5 years or 6–10 years of experience (all P< 0.05, Table 4). For readers with 11–15 years of experience, no evidence suggested that AI could improve sensitivity and AUC (P= 0.124 and 0.152, respectively). CONCLUSION: The AI model might aid less experienced physicians and radiologists in improving their diagnostic performance for the localisation of nasal bone fractures on CT images.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Reference23 articles.

1. Nasal bone fractures: Analysis of 1193 cases with an emphasis on coincident adjacent fractures;Li;Facial Plastic Surgery & Aesthetic Medicine.,2020

2. Considerations for nasal bone fractures: Preoperative, perioperative, and postoperative;Han;Archives of Craniofacial Surgery.,2020

3. Trend analysis of nasal bone fracture;Kim;Archives of Craniofacial Surgery.,2018

4. Spectrum of diagnostic errors in radiology;Pinto;World Journal of Radiology.,2010

5. Artificial intelligence for analyzing orthopedic trauma radiographs;Olczak;Acta Orthopaedica.,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3