Affiliation:
1. Department of Chemistry, College of Science, University of Al-Muthanna, Iraq
2. Department of Chemistry, College of Science for Women, University of Babylon, Iraq
Abstract
In the last few decades, more attention has been focussed on water treatment. In this study, an advanced catalyst Pd-doped ZnO-CdS nanocomposite was prepared using the photo deposition method. The structure and morphology of the obtained material were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), examining optical properties using UV-visible spectroscopy. Results of absorption show broader bands with moderated energy band gaps and improved photocatalytic properties. The photocatalytic applications show that the increase in amount of pd/ZnO-CdS nanocomposites up to 0.4 g/L increase the number of active site, but beyond 0.4 g/L there is little increase in % degradation. Therefore, the best catalyst at 0.4 g/L was used to remove BG dye. Photo catalytic activity increase was observed for Pd/ZnO-CdS nanocomposites which is about 86.6%. Photocatalytic degradation efficiency (PDE%) increases as the dye concentration decreases from 86.66% to 26.9 %. It was observed that the photo-catalytic degradation of BG dye was 86.6%–95.8% for the first four cycles. This indicates the good stability of ZnO-CdS/Pd nano-composites and could be potentially applied in the practical batch degradation.
Subject
Pollution,Water Science and Technology