Reinforcement learning vs. rule-based adaptive traffic signal control: A Fourier basis linear function approximation for traffic signal control

Author:

Ziemke Theresa1,Alegre Lucas N.2,Bazzan Ana L.C.2

Affiliation:

1. Transport Systems Planning and Transport Telematics, Technische Universität Berlin, Germany. E-mail: tziemke@vsp.tu-berlin.de

2. Instituto da Informática, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil. E-mails: lnalegre@inf.ufrgs.br, bazzan@inf.ufrgs.br

Abstract

Reinforcement learning is an efficient, widely used machine learning technique that performs well when the state and action spaces have a reasonable size. This is rarely the case regarding control-related problems, as for instance controlling traffic signals. Here, the state space can be very large. In order to deal with the curse of dimensionality, a rough discretization of such space can be employed. However, this is effective just up to a certain point. A way to mitigate this is to use techniques that generalize the state space such as function approximation. In this paper, a linear function approximation is used. Specifically, SARSA ( λ ) with Fourier basis features is implemented to control traffic signals in the agent-based transport simulation MATSim. The results are compared not only to trivial controllers such as fixed-time, but also to state-of-the-art rule-based adaptive methods. It is concluded that SARSA ( λ ) with Fourier basis features is able to outperform such methods, especially in scenarios with varying traffic demands or unexpected events.

Publisher

IOS Press

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3