The use of an LSTM-based autoencoder for measurement denoising in process tomography

Author:

Kłosowski Grzegorz1,Rymarczyk Tomasz23,Wójcik Dariusz23

Affiliation:

1. Lublin University of Technology, , , Poland

2. WSEI University, , , Poland

3. Research and Development Centre Netrix S.A., , , Poland

Abstract

The main problem with any tomography is the transformation of measurements into images. It is the so-called “inverse problem”, which, due to its indeterminacy, can never be solved perfectly. An additional factor contributing to the deterioration of the quality of tomograms is measurement noise. This article shows how to denoise electrical capacitance tomography measurements using the LSTM autoencoder. The presented model is two-staged. First, the autoencoder is trained using very noisy measurements. Then, the decoder autoencoder generates a training set to using activations ofe the latent layer. In the second stage, the LSTM network is trained, which has encoder latent layer activations at the input and pattern images at the output. The results of the experiments show that using an autoencoder to denoise the measurements improves the reconstruction quality.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference25 articles.

1. Planar array 3D electrical capacitance tomography;Ye;Insight - Non-Destructive Testing and Condition Monitoring,2013

2. Fuzzy regulator for two-phase gas–liquid pipe flows control;Fiderek;Applied Sciences (Switzerland),2022

3. Lecture Notes in Mechanical Engineering;Pizoń,2022

4. Analytical and numerical models of the magnetoacoustic tomography with magnetic induction;Ziolkowski;COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3