Fog computing enabled air quality monitoring and prediction leveraging deep learning in IoT

Author:

Bharathi P. Divya1,Narayanan V. Anantha1,Sivakumar P. Bagavathi1

Affiliation:

1. Department of Computer Science and Engineering, Amrita School of Engineering, Coimbatore, Amrita VishwaVidyapeetham, India

Abstract

With the rapid industrialization and urbanization worldwide, air quality levels are deteriorating at an unprecedented rate and posing a substantial threat to humans and the environment. This brings the concern to effectively monitor and forecast air quality levels in real-time. Conventional air quality monitoring stations are built based on centralized architectures involving high latency, communication technologies demanding high power, sensors involving high costs and decision making with moderate accuracy. To address the limitations of the existing systems, we propose a smart and distinct Air Quality Monitoring and Forecasting system embracing Fog Computing with IoT and Deep Learning (DL). The system is a three-layered architecture with the Sensing layer first, Fog Computing layer in between, and Cloud Computing layer at the end. Fog Computing is a powerful new generation paradigm that brings storage, computation, and networking at the edge of the IoT network and reduce network latency. A DL based BiLSTM (Bidirectional Long Short-Term Memory) model is deployed in the Fog Computing layer. The proposed system aims at real-time monitoring and accurate air quality forecasting to support decision making and aid timely prevention and control of pollutant emissions by alerting the stakeholders when a dangerous Air Quality Index (AQI) is expected. Experimental results show that the BiLSTM model has a better predictive performance considering the meteorological parameters than the baseline models in terms of MAE and RMSE. A proof of concept realizing the proposed system is elaborated in the paper.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference25 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3