Fault diagnosis of rolling bearings based on multi-scale deep subdomain adaptation network

Author:

Zhou Qin1,Su Zuqiang2,Liu Lanhui3,Hu Xiaolin3,Yu Jianhang1

Affiliation:

1. Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China

2. School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China

3. Chongqing Industrial Big Data Innovation Center Co., Ltd, Chongqing, China

Abstract

This study presents a fault diagnosis method for rolling bearing based on multi-scale deep subdomain adaptation network (MSDSAN). The proposed MSDSAN, as improvement of deep subdomain adaptation network (DSAN), is an unsupervised transfer learning method. MSDSAN reduces the subdomain distribution discrepancy between domains rather than marginal distribution discrepancy, and so better domain invariant fault features are derived to avoid misalignment between domains. Aiming at avoiding fault information loss by fixed receptive fields feature extraction, selective kernel convolution module is introduced into feature extraction of MSDSAN, by which multiple receptive fields are applied to ensure an optimal receptive field for each working condition. Moreover, contribution rates are adaptively assigned to all receptive fields, and the disturbing information extracted by inappropriate receptive fields is further eliminated. As a result, more comprehensive and effective fault information is derived for bearing fault diagnosis. Fault diagnosis experiment of bearings is performed to verify the superiority of the proposed method, and the experimental results demonstrate that MSDSAN achieves better transfer effects and higher accuracy than SOTA methods under varying working conditions.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3