EDCOSUM: Text extractive summarization framework based on edge information with coreference resolution

Author:

Shuang Chen1,Tao Ren1,Yuntai Ding1

Affiliation:

1. Software College, Northeastern University, Shenyang, China

Abstract

Automatic Text Summarization(ATS) is distinctly beneficial due to a vast amount of textual data and time-consuming manual summarization. In order to enhance ATS for single document in huge datasets, a new extractive graph framework - text extractive SUMmarization framework based on EDge information with COreference resolution EDCOSUM is proposed in this paper that relies on coreference resolution, adding edge information in word-level graph and a sentence-ranking strategy. EDCOSUM combines the graph-based and statistical-based extractive summarization methods. It is a general method for any document (not limited to a specific domain). Moreover, two ranking strategies(sentence and LSA ranking strategy) are proposed for sentence selection. A set of extensive experiments on CNN/Daily Mail and NEWSROOM are conducted for investigating the proposed method. The widely used automatic evaluation tool: Recall-Oriented Understudy for Gisting Evaluation(ROUGE) is utilized to evaluate EDCOSUM. Compared to the state-of-the-art ATS methods, EDCOSUM achieves a competitive result by improvements of over the highest scores in the literature for metrics ROUGE-1, ROUGE-2 and ROUGE-L respectively.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference21 articles.

1. Introduction to the special issue on summarization;Radev;Computational Linguistics,2002

2. Improving multi-documentsummarization via text classification;Cao;In Proceedings of theAAAI Conference on Artificial Intelligence,2017

3. A survey of text summarization extractivetechniques;Gupta;Journal of Emerging Technologies in WebIntelligence,2010

4. Recent automatic text summarizationtechniques: a survey;Gambhir;Artificial Intelligence Review,2017

5. Afsharizadeh M. , Ebrahimpour-Komleh H. and Bagheri A. , Query-oriented text summarization using sentence extraction technique, In 2018 4th international conference on web research (ICWR), pages 128–132. IEEE, (2018).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3