Legal Knowledge Extraction for Knowledge Graph Based Question-Answering

Author:

Sovrano Francesco1,Palmirani Monica2,Vitali Fabio1

Affiliation:

1. DISI, University of Bologna

2. CIRSFID-Alma AI, University of Bologna

Abstract

This paper presents the Open Knowledge Extraction (OKE) tools combined with natural language analysis of the sentence in order to enrich the semantic of the legal knowledge extracted from legal text. In particular the use case is on international private law with specific regard to the Rome I Regulation EC 593/2008, Rome II Regulation EC 864/2007, and Brussels I bis Regulation EU 1215/2012. A Knowledge Graph (KG) is built using OKE and Natural Language Processing (NLP) methods jointly with the main ontology design patterns defined for the legal domain (e.g., event, time, role, agent, right, obligations, jurisdiction). Using critical questions, underlined by legal experts in the domain, we have built a question answering tool capable to support the information retrieval and to answer to these queries. The system should help the legal expert to retrieve the relevant legal information connected with topics, concepts, entities, normative references in order to integrate his/her searching activities.

Publisher

IOS Press

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ontology-Driven Automated Reasoning About Property Crimes;Business & Information Systems Engineering;2024-08-12

2. Designing an Intelligent Contract with Communications and Risk Data;SN Computer Science;2024-07-10

3. How to Improve the Explanatory Power of an Intelligent Textbook: a Case Study in Legal Writing;International Journal of Artificial Intelligence in Education;2024-05-06

4. An Empirical Study on Compliance with Ranking Transparency in the Software Documentation of EU Online Platforms;Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Society;2024-04-14

5. GoKnowGraph: A Multilingual Semantic Search System for Government of Kerala System Documents;Lobachevskii Journal of Mathematics;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3