The intrinsic dimensionality of network datasets and its applications1

Author:

Gorbett Matt1,Siebert Caspian1,Shirazi Hossein1,Ray Indrakshi1

Affiliation:

1. Colorado State University, Fort Collins, Colorado, USA

Abstract

Modern network infrastructures are in a constant state of transformation, in large part due to the exponential growth of Internet of Things (IoT) devices. The unique properties of IoT-connected networks, such as heterogeneity and non-standardized protocol, have created critical security holes and network mismanagement. In this paper we propose a new measurement tool, Intrinsic Dimensionality (ID), to aid in analyzing and classifying network traffic. A proxy for dataset complexity, ID can be used to understand the network as a whole, aiding in tasks such as network management and provisioning. We use ID to evaluate several modern network datasets empirically. Showing that, for network and device-level data, generated using IoT methodologies, the ID of the data fits into a low dimensional representation. Additionally we explore network data complexity at the sample level using Local Intrinsic Dimensionality (LID) and propose a novel unsupervised intrusion detection technique, the Weighted Hamming LID Estimator. We show that the algortihm performs better on IoT network datasets than the Autoencoder, KNN, and Isolation Forests. Finally, we propose the use of synthetic data as an additional tool for both network data measurement as well as intrusion detection. Synthetically generated data can aid in building a more robust network dataset, while also helping in downstream tasks such as machine learning based intrusion detection models. We explore the effects of synthetic data on ID measurements, as well as its role in intrusion detection systems.

Publisher

IOS Press

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3