Siamese capsule network with position correlation and integrating articles of law for Chinese similar case matching

Author:

Chen Zhe1,Ye Lin1,Zhang Hongli1,Zhang Yunting1

Affiliation:

1. Harbin Institute of Technology, Harbin, China

Abstract

The purpose of the Chinese similar case matching task is to compare the similarity of two case texts with a given anchor text and find out which text is more similar to the anchor text. In the area of law, it plays an important role and has been of interest to many researchers. Previous approaches have compared legal texts only at the text semantic level, without incorporating article information of law. In addition, the position correlation of words in case texts is often important, but it has not been considered in previous approaches. This paper proposes a method which extracts features from the semantic similarity level and from the level of related articles of law, respectively, to enable similarity comparisons of legal case texts. When similarity comparisons are made at the semantic similarity level, a novel capsule network method is proposed based on siamese structure that introduces the position correlation and the routing mechanism within the capsule network is improved so that deep text features between case pairs can be learned. When similarity comparisons are made at the level of related articles of law, related articles of law are selected and coded and interacted with the case text features to generate legal features. Experiment is conducted with a real-world legal text dataset, and the proposed model outperformed all baseline models, demonstrating effectiveness of the proposed model. Further, to confirm the generality of the improved capsule network proposed in the paper on long text datasets, this paper also carried out experiments on two long text datasets, demonstrating effectiveness of the improved capsule network proposed in the model.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3