Developing, evaluating and scaling learning agents in multi-agent environments

Author:

Gemp Ian1,Anthony Thomas1,Bachrach Yoram1,Bhoopchand Avishkar1,Bullard Kalesha1,Connor Jerome1,Dasagi Vibhavari1,De Vylder Bart1,Duéñez-Guzmán Edgar A.1,Elie Romuald1,Everett Richard1,Hennes Daniel1,Hughes Edward1,Khan Mina1,Lanctot Marc1,Larson Kate1,Lever Guy1,Liu Siqi1,Marris Luke1,McKee Kevin R.1,Muller Paul1,Pérolat Julien1,Strub Florian1,Tacchetti Andrea1,Tarassov Eugene1,Wang Zhe1,Tuyls Karl1

Affiliation:

1. Game Theory & Multi-Agent Team, DeepMind, London, UK

Abstract

The Game Theory & Multi-Agent team at DeepMind studies several aspects of multi-agent learning ranging from computing approximations to fundamental concepts in game theory to simulating social dilemmas in rich spatial environments and training 3-d humanoids in difficult team coordination tasks. A signature aim of our group is to use the resources and expertise made available to us at DeepMind in deep reinforcement learning to explore multi-agent systems in complex environments and use these benchmarks to advance our understanding. Here, we summarise the recent work of our team and present a taxonomy that we feel highlights many important open challenges in multi-agent research.

Publisher

IOS Press

Subject

Artificial Intelligence

Reference71 articles.

1. Learning to play no-press diplomacy with best response policy iteration;Anthony;Advances in Neural Information Processing Systems,2020

2. Some mathematical models of race discrimination in the labor market;Arrow;Racial discrimination in economic life,1972

3. Negotiating team formation using deep reinforcement learning

4. Y. Bachrach, I. Gemp, M. Garnelo, J. Kramar, T. Eccles, D. Rosenbaum and T. Graepel, A neural network auction for group decision making over a continuous space, in: Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI) Demonstrations Track, 2021.

5. A. Bakhtin, D. Wu, A. Lerer and N. Brown, No-press diplomacy from scratch, Advances in Neural Information Processing Systems 34 (2021).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3