Identification of moisture inside walls in buildings using machine learning and ensemble methods

Author:

Rymarczyk Tomasz12,Kłosowski Grzegorz3

Affiliation:

1. University of Economics and Innovation in Lublin, , Poland

2. , , Poland

3. Lublin University of Technology, , Poland

Abstract

According to the article, locating moisture within the walls of buildings using electrical impedance tomography is discussed in detail. The algorithmic approach, whose role is to convert the input measurements into images, received excellent attention during the development process. Numerous models have been trained to generate tomographic images based on individual pixels in a given image based on machine learning methods. An array of categorisation data was then generated, which enabled the development of a classification model to solve the problem of optimal model selection for a given point on the screen. It was achieved in this manner by developing a pixel-oriented ensemble model (POE), the goal of which is to provide tomographic reconstructions of at least the same quality as homogeneous algorithmic approaches. Artificial neural networks (ANN), linear regression (LR), and the long short-term memory network (LSTM) were employed in the current research to get homogeneous machine learning results. An image reconstruction algorithm such as the ANN or the LR reconstructs the image pixel by pixel, which means that a different prediction model is trained for each image pixel. In the case of LSTM, a single network is responsible for creating the entire image. Then, using the POE algorithm, the best reconstruction method was fitted to each pixel of the output image while considering the measurement scenario provided to the program. As a result, each measurement consequences in a unique assignment of reconstructive procedures to individual pixels, which is different for each measurement. It is the capacity to maximise the selection of a prediction model while considering both a given pixel and a specific measurement vector that distinguishes the provided POE concept from other approaches.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3