Reliability evaluation method of PMFSM system based on hidden Markov

Author:

Zhou Yongqin1,Huang Jianxin2,Zhou Lei3,Tian Hongbo4

Affiliation:

1. , , Harbin University of Science & Technology, , China

2. State Grid Hangzhou Linan Power Supply Company, , China

3. , , China

4. School of Electrical and Electronic Engineering, Harbin University of Science & Technology, Harbin, China

Abstract

To solve the complex calculation in the reliability evaluation of the motor system with the Markov model, this study developed a reliability evaluation method based on the hidden Markov model (HMM). Next, the developed method was employed in a type of permanent magnet hybrid segmented flux-switching machine (PMFSM). By analyzing and simplifying the components of the PMFSM system, the reliability measurement standard and the failure modes of the respective component were examined, and the relationships between the failure modes of each component and the system parameters were built. The optimal parameter observation sequence was determined by calculating the Minkowski distance, and the HMM was iteratively calculated by using the Baum–Welch algorithm. Moreover, the state transition probability matrix of the system was built, and the system reliability was evaluated. As revealed from the calculation results, the reliability of the PMFSM system is significantly higher than that of the conventional structure at the same time, and the mean time to failure (MTTF) of the PMFSM system is 14.8% higher than that of the conventional structure. Compared with the conventional evaluation method based on the Markov model, the two methods have similar reliability results for conventional and novel PMFSM systems, and the variation trend is the same. It shows that the proposed reliability evaluation method is feasible and effective, and the calculation is simple. The work in this study provides a basis for the design of the novel PMFSM system, and a practical engineering method to efficiently evaluate the reliability of other motor systems.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3