Empirical ontology design patterns and shapes from Wikidata

Author:

Carriero Valentina Anita1,Groth Paul2,Presutti Valentina3

Affiliation:

1. Department of Computer Science and Engineering, University of Bologna, Italy

2. Faculty of Science, University of Amsterdam, Netherlands

3. Department of Languages, Literatures and Modern Cultures, University of Bologna, Italy

Abstract

The ontology underlying the Wikidata knowledge graph (KG) has not been formalized. Instead, its semantics emerges bottom-up from the use of its classes and properties. Flexible guidelines and rules have been defined by the Wikidata project for the use of its ontology, however, it is still often difficult to reuse the ontology’s constructs. Based on the assumption that identifying ontology design patterns from a knowledge graph contributes to making its (possibly) implicit ontology emerge, in this paper we present a method for extracting what we term empirical ontology design patterns (EODPs) from a knowledge graph. This method takes as input a knowledge graph and extracts EODPs as sets of axioms/constraints involving the classes instantiated in the KG. These EODPs include data about the probability of such axioms/constraints happening. We apply our method on two domain-specific portions of Wikidata, addressing the music and art, architecture, and archaeology domains, and we compare the empirical ontology design patterns we extract with the current support present in Wikidata. We show how these patterns can provide guidance for the use of the Wikidata ontology and its potential improvement, and can give insight into the content of (domain-specific portions of) the Wikidata knowledge graph.

Publisher

IOS Press

Reference20 articles.

1. ABSTAT-HD: a scalable tool for profiling very large knowledge graphs

2. L. Asprino, V.A. Carriero, C. Colonna and V. Presutti, OPLaX: Annotating ontology design patterns at conceptual and instance level, in: Proceedings of the 12th Workshop on Ontology Design and Patterns (WOP 2021) Co-Located with 20th International Semantic Web Conference (ISWC 2021), K. Hammar, C. Shimizu, H. Küçük-McGinty, L. Asprino and V.A. Carriero, eds, CEUR Workshop Proceedings, Vol. 3011, CEUR-WS.org, 2021, pp. 1–13.

3. E. Blomqvist, Z. Zhang, A.L. Gentile, I. Augenstein and F. Ciravegna, Statistical knowledge patterns for characterising linked data, in: Proceedings of the 4th Workshop on Ontology and Semantic Web Patterns Co-Located with 12th International Semantic Web Conference (ISWC 2013), Sydney, Australia, October 21, 2013, CEUR Workshop Proceedings, Vol. 1188, CEUR-WS.org, 2013.

4. I. Boneva, J. Dusart, D. Fernández-Álvarez and J.E.L. Gayo, Shape designer for ShEx and SHACL constraints, in: Proceedings of Posters & Demonstrations, Industry, and Outrageous Ideas – ISWC 2019, M.C. Suárez-Figueroa, G. Cheng, A.L. Gentile, C. Guéret, C.M. Keet and A. Bernstein, eds, CEUR Workshop Proceedings, Vol. 2456, CEUR-WS.org, 2019, pp. 269–272.

5. Applying a Multi-Level Modeling Theory to Assess Taxonomic Hierarchies in Wikidata

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3