Volume and surface coil simultaneous reception (VSSR) method for intensity inhomogeneity correction in MRI

Author:

Wu Lin1231,He Tian123,Yu Jie123,Liu Hang123,Zhang Shuang14231,Zhang Tao123

Affiliation:

1. School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China

2. High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan, University of Electronic Science and Technology of China, Chengdu, Sichuan, China

3. Key Laboratory for Neuro Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, Sichuan, China

4. Data Recovery Key Laboratory of Sichuan Province, College of Computer Science and AI, Neijiang Normal University, Neijiang, Sichuan, China

Abstract

BACKGROUND: Addressing intensity inhomogeneity is critical in magnetic resonance imaging (MRI) because associated errors can adversely affect post-processing and quantitative analysis of images (i.e., segmentation, registration, etc.), as well as the accuracy of clinical diagnosis. Although several prior methods have been proposed to eliminate or correct intensity inhomogeneity, some significant disadvantages have remained, including alteration of tissue contrast, poor reliability and robustness of algorithms, and prolonged acquisition time. OBJECTIVE: In this study, we propose an intensity inhomogeneity correction method based on volume and surface coils simultaneous reception (VSSR). METHODS: The VSSR method comprises of two major steps: 1) simultaneous image acquisition from both volume and surface coils and 2) denoising of volume coil images and polynomial surface fitting of bias field. Extensive in vivo experiments were performed considering various anatomical structures, acquisition sequences, imaging resolutions, and orientations. In terms of correction performance, the proposed VSSR method was comparatively evaluated against several popular methods, including multiplicative intrinsic component optimization and improved nonparametric nonuniform intensity normalization bias correction methods. RESULTS: Experimental results show that VSSR is more robust and reliable and does not require prolonged acquisition time with the volume coil. CONCLUSION: The VSSR may be considered suitable for general implementation.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Deep Learning for Alzheimer’s Disease;Machine Learning and Knowledge Extraction;2023-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3