Cognitive twin construction for system of systems operation based on semantic integration and high-level architecture

Author:

Li Han1,Wang Guoxin1,Lu Jinzhi2,Kiritsis Dimitris2

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China

2. SCI-STI-DK, EPFL, CH-1015 Lausanne, Switzerland

Abstract

With the increasing complexity of engineered systems, digital twins (DTs) have been widely used to support integrated modeling, simulation, and decision-making of the system of systems (SoS). However, when integrating DTs of each constituent system, it is challenging to implement complexity management, interface definition, and service integration across DTs. This study proposes a new concept called cognitive twin (CT) to support SoS development and operation. CTs have been defined as DTs with augmented semantic capabilities for promoting the understanding of interrelationships be-tween virtual models and enhancing the decision-making. First, CTs aim to integrate the information description of DTs across constituent systems using a unified ontology and semantic modeling technique. Second, CTs provide integrated simulations among DTs for decision-making of the SoS based on a high-level architecture (HLA). Finally, through reasoning ontology models, CTs provide decision-making options for the operations of real constituent systems. A case study on unmanned aerial vehicles (UAVs) landing on unmanned surface vehicles (USVs) is used to verify the flexibility of this approach. From the results, we find that the CT based on the proposed ontology provides a unified formalism of DTs across UAVs and USVs. Moreover, the reasoning based on the CT provides decision-making capabilities for UAVs by implementing cognitive computing to select target USVs for landing.

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of thrust bearing’s performance in Mixed Lubrication regime;Integrated Computer-Aided Engineering;2024-07-31

2. A rendering‐based lightweight network for segmentation of high‐resolution crack images;Computer-Aided Civil and Infrastructure Engineering;2024-06-23

3. GreenhouseDT: An Exemplar for Digital Twins;Proceedings of the 19th International Symposium on Software Engineering for Adaptive and Self-Managing Systems;2024-04-15

4. A semantic model-based systems engineering approach for assessing the operational performance of metal forming process;Computers & Industrial Engineering;2024-04

5. Vision‐based fatigue crack automatic perception and geometric updating of finite element model for welded joint in steel structures;Computer-Aided Civil and Infrastructure Engineering;2024-02-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3