Raman spectroscopic analysis of skin penetration and moisturizing effects of Bionics vernix caseosa cream compared with Vaseline

Author:

Meng Hong1,Yin Yating1,Wu Wenhai2,Liu Yuhong3,Li Li1,Dong Yinmao1,Fan Yi1,Li Yue4,He Yifan1

Affiliation:

1. Institute of Regulatory Science, Beijing Technology and Business University, Beijing 100048, China

2. Beijing Academy of TCM Beauty Supplements, Beijing 100048, China

3. Nutri-Woods Bio-Tech (Beijing) Co., Ltd., Beijing 100048, China

4. Beijing International Studies University, Beijing 100000, China

Abstract

BACKGROUND: The stratum corneum (SC) is the outermost layer of human skin and deemed as barrier against chemical exposure and water loss. Moisturizers have beneficial effects in treating dry skin, especially the SC. Confocal Raman spectroscopy (CRS) was used to evaluate the efficacy of moisturizers on skin hydration and penetration, with such agents posing inherent characteristics of being noninvasive, nondestructive, timesaving, and cost effective. Bionics vernix caseosa (BVC) cream mimics the composition of vernix caseosa (VC), which could protect the newborn skin. METHODS: This research applied CRS to evaluate the penetration depth and water content variation during the intervention with two moisturizers, BVC cream and Vaseline. Volunteers received the 2 h application of BVC cream and Vaseline on the forearms. The evaluations on 0 h, 2 h, 4 h and 6 h were performed clinical assessment. Experimental data was processed by least square method and analysis of variance (ANOVA). RESULTS: The penetration depth of Vaseline was deeper than that of Bionics vernix caseosa cream. Specifically, BVC cream penetrated 18 μm into human skin, while Vaseline penetrated at least 20 μm. Compared with Vaseline, only BVC cream increased skin hydration, with a moisturizing effect lasting for 4 h. At 6 h, the Vaseline moisturizing effect decreased significantly.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3