From programming-to-modeling-to-prompts smart ubiquitous applications

Author:

Khalfi Mohammed Fethi1,Tabbiche Mohammed Nadjib2,Adjoudj Reda2

Affiliation:

1. LabRI-SBA Lab (ESI-SBA), Department of Computer Science, University of Djillali Liabes, Sidi Bel-Abbes, Algeria

2. EEDIS Lab, Department of Computer Science, University of Djillali Liabes, Sidi Bel-Abbes, Algeria

Abstract

Since its introduction by Mark Weiser, ubiquitous computing has received increased interest in the dawn of technological advancement. Supported by wireless technology advancement, embedded systems, miniaturization, and the integration of various intelligent and communicative devise, context-aware ubiquitous applications actively and intelligently use rich contextual information to assist their users. However, their designs are subject to continuous changes imposed by external factors. Nowadays, software engineering, particularly in the fields of Model-Driven Engineering, displays a strong tendency towards developing applications for pervasive computing. This trend is also fueled by the rise of generative artificial intelligence, paving the way for a new generation of no-code development tools and models specifically trained on open-source code repositories to generate applications from their descriptions. The specificities of our approach lies in starting with a graphical model expressed using a domain-specific language (DSL) composed of symbols and formal notations. This allows for graphically instantiating and editing applications, guiding and assisting experts from various engineering fields in defining ubiquitous applications that are eventually transformed into peculiar models. We believe that creating intelligent models is the best way to promote software development efficiency. We have used and evaluated recurrent neural networks, leveraging the recurrence of processing the same contextual information collected within this model, and enabling iterative adaptation to future evolutions in ubiquitous systems. We propose a prototype instantiated by our meta-model which tracks the movements of individuals who were positive for COVID-19 and confirmed to be contagious. Different deep learning models and classical machine learning techniques are considered and compared for the task of detection/classification of COVID-19. Results obtained from all techniques were evaluated with confusion matrices, accuracy, precision, recall and F1-score. In summary, most of the results are very impressive. Our deep learning approach used a RNN architecture produced up to 92.1% accuracy. With the recent development of OpenAI Codex, optimized for programming languages, we provided the same requirements to the Codex model and asked it to generate the source code for the COVID-19 application, comparing it with the application generated by our workshop.

Publisher

IOS Press

Subject

Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3