A Study of Assisted Screening for Alzheimer’s Disease Based on Handwriting and Gait Analysis

Author:

Qi Hengnian1,Zhu Xiaorong1,Ren Yinxia2,Zhang Xiaoya1,Tang Qizhe1,Zhang Chu1,Lang Qing3,Wang Lina2

Affiliation:

1. Department of Information Engineering, Huzhou University, Huzhou, China

2. School of Medicine and Nursing, Huzhou University, Huzhou, China

3. Library, Huzhou University, Huzhou, China

Abstract

Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is not easily detected in the early stage. Handwriting and walking have been shown to be potential indicators of cognitive decline and are often affected by AD. Objective: This study proposes an assisted screening framework for AD based on multimodal analysis of handwriting and gait and explores whether using a combination of multiple modalities can improve the accuracy of single modality classification. Methods: We recruited 90 participants (38 AD patients and 52 healthy controls). The handwriting data was collected under four handwriting tasks using dot-matrix digital pens, and the gait data was collected using an electronic trail. The two kinds of features were fused as inputs for several different machine learning models (Logistic Regression, SVM, XGBoost, Adaboost, LightGBM), and the model performance was compared. Results: The accuracy of each model ranged from 71.95% to 96.17%. Among them, the model constructed by LightGBM had the best performance, with an accuracy of 96.17%, sensitivity of 95.32%, specificity of 96.78%, PPV of 95.94%, NPV of 96.74%, and AUC of 0.991. However, the highest accuracy of a single modality was 93.53%, which was achieved by XGBoost in gait features. Conclusions: The research results show that the combination of handwriting features and gait features can achieve better classification results than a single modality. In addition, the assisted screening model proposed in this study can achieve effective classification of AD, which has development and application prospects.

Publisher

IOS Press

Reference49 articles.

1. Prospects for the application of new medical imaging technologies in neurodegenerative diseases of the elderly;Yin;Geriatr Health Care,2023

2. Alzheimer disease;Castellani;Dis Mon,2010

3. Alzheimer’s disease facts and figures Alzheimers Dement 2023; 19: 1598–1695.

4. Epidemiology of Alzheimer disease;Reitz;Nat Rev Neurol,2011

5. Alzheimer mechanisms and therapeutic strategies;Huang;Cell,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3