Adaptive orthogonal directional total variation with kernel regression for CT image denoising

Author:

Xue Xiying1,Ji Dongjiang1,Xu Chunyu1,Zhao Yuqing2,Li Yimin2,Hu Chunhong2

Affiliation:

1. School of Science, Tianjin University of Technology and Education, Tianjin, China

2. School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China

Abstract

BACKGROUND: Low-dose computed tomography (CT) has been successful in reducing radiation exposure for patients. However, the use of reconstructions from sparse angle sampling in low-dose CT often leads to severe streak artifacts in the reconstructed images. OBJECTIVE: In order to address this issue and preserve image edge details, this study proposes an adaptive orthogonal directional total variation method with kernel regression. METHODS: The CT reconstructed images are initially processed through kernel regression to obtain the N-term Taylor series, which serves as a local representation of the regression function. By expanding the series to the second order, we obtain the desired estimate of the regression function and localized information on the first and second derivatives. To mitigate the noise impact on these derivatives, kernel regression is performed again to update the first and second derivatives. Subsequently, the original reconstructed image, its local approximation, and the updated derivatives are summed using a weighting scheme to derive the image used for calculating orientation information. For further removal of stripe artifacts, the study introduces the adaptive orthogonal directional total variation (AODTV) method, which denoises along both the edge direction and the normal direction, guided by the previously obtained orientation. RESULTS: Both simulation and real experiments have obtained good results. The results of two real experiments show that the proposed method has obtained PSNR values of 34.5408 dB and 29.4634 dB, which are 1.2392–5.9333 dB and 2.828–6.7995 dB higher than the contrast denoising algorithm, respectively, indicating that the proposed method has good denoising performance. CONCLUSIONS: The study demonstrates the effectiveness of the method in eliminating strip artifacts and preserving the fine details of the images.

Publisher

IOS Press

Reference33 articles.

1. Adaptive Gaussian filter for noise reduction and edge detection;Deng;IEEE Nuclear Science Symposium & Medical Imaging Conference,1993

2. Adaptive Wiener filtering of noisy images and image sequences;Jin;IEEE International Conference on Image Processing,2003

3. New algorithms for sparse representation of discrete signals based on ℓp-ℓ2 optimization;Yan;IEEE Pacific RIM Conference on Communications, Computers, and Signal Processing – Proceedings

4. Solutions of Ill-Posed Problems;Bell;Mathematics of Computation,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3