VOR gain calculation methods in video head impulse recordings

Author:

Zamaro Ewa1,Saber Tehrani Ali S.2,Kattah Jorge C.3,Eibenberger Karin4,Guede Cynthia I.3,Armando Lenz5,Caversaccio Marco D.1,Newman-Toker David E.2,Mantokoudis Georgios1

Affiliation:

1. Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland

2. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

3. Department of Neurology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA

4. Boston University, Department of Psychology and Brain Sciences, Boston, MA, USA

5. CTU Bern, and Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland

Abstract

BACKGROUND: International consensus on best practices for calculating and reporting vestibular function is lacking. Quantitative vestibulo-ocular reflex (VOR) gain using a video head impulse test (HIT) device can be calculated by various methods. OBJECTIVE: To compare different gain calculation methods and to analyze interactions between artifacts and calculation methods. METHODS: We analyzed 1300 horizontal HIT traces from 26 patients with acute vestibular syndrome and calculated the ratio between eye and head velocity at specific time points (40 ms, 60 ms) after HIT onset (‘velocity gain’), ratio of velocity slopes (‘regression gain’), and ratio of area under the curves after de-saccading (‘position gain’). RESULTS: There was no mean difference between gain at 60 ms and position gain, both showing a significant correlation (r2 = 0.77, p < 0.001) for artifact-free recordings. All artifacts reduced high, normal-range gains modestly (range –0.06 to –0.11). The impact on abnormal, low gains was variable (depending on the artifact type) compared to artifact-free recordings. CONCLUSIONS: There is no clear superiority of a single gain calculation method for video HIT testing. Artifacts cause small but significant reductions of measured VOR gains in HITs with higher, normal-range gains, regardless of calculation method. Artifacts in abnormal HITs with low gain increased measurement noise. A larger number of HITs should be performed to confirm abnormal results, regardless of calculation method.

Publisher

IOS Press

Subject

Clinical Neurology,Sensory Systems,Otorhinolaryngology,General Neuroscience

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3