Quadratic optimization for the hyper-parameter based on maximum entropy search

Author:

Li Yuqi1

Affiliation:

1. School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing, China

Abstract

The method based on entropy was used for the Bayesian optimization. Based on compelling information theory, Entropy Search (ES) and Predictive Entropy Search (PES) maximized information about the unknown function when the loss function reaches the maximum value. However, both methods were plagued by complicated calculations for estimating entropy. The most important motivation of this article is to improve and modularize the entropy search itself, making this method more flexible and effective for model adaptation. After the initial optimization and pruning module processing, a reasonable initial configuration for the complex model was successfully established, further reducing the space required for secondary optimization hyper-parameter search. The advantage of this method is that, on the one hand, the basic method of Bayesian optimization is used to get the best result of the iteration, while ensuring that the algorithm has theoretical boundedness. On the other hand, through the maximum entropy, the information features of the original space and data set are retained as much as possible to reduce the loss of information due to the initialization process, so as to improve the precision of the secondary optimization of the model. Further, a new algorithm framework is proposed, integrating MES and Sequential Model-Based Optimization (SMBO). With MES as the final module of the whole optimization process, a more accurate and reasonable algorithmic model was built, which lays a solid mathematical basis for the final empirical analysis.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3