Combined Unet and CNN image classification model for COVID disease detection using CXR/CT imaging

Author:

Haennah J.H. Jensha1,Christopher C. Seldev2,King G.R. Gnana3

Affiliation:

1. Research Scholar St.Xavier’s Catholic College of Engineering Tamil Nadu, India

2. St.Xavier’s Catholic College of Engineering Tamil Nadu, India

3. Sahrdaya College of Engineering and Technology Kerala, India

Abstract

Accurate SARS-CoV-2 screening is made possible by automated Computer-Aided Diagnosis (CAD) which reduces the stress on healthcare systems. Since Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is highly contagious, the transition chain can be broken through an early diagnosis by clinical knowledge and Artificial Intelligence (AI). Manual findings are time and labor-intensive. Even if Reverse Transcription-Polymerase Chain Reaction (RT-PCR) delivers quick findings, Chest X-ray (CXR) imaging is still a more trustworthy tool for disease classification and assessment. Several studies have been conducted using Deep Learning (DL) algorithms for COVID-19 detection. One of the biggest challenges in modernizing healthcare is extracting useful data from high-dimensional, heterogeneous, and complex biological data. Intending to introduce an automated COVID-19 diagnosis model, this paper develops a proficient optimization model that enhances the classification performance with better accuracy. The input images are initially pre-processed with an image filtering approach for noise removal and data augmentation to extend the dataset. Secondly, the images are segmented via U-Net and are given to classification using the Fused U-Net Convolutional Neural Network (FUCNN) model. Here, the performance of U-Net is enhanced through the modified Moth Flame Optimization (MFO) algorithm named Chaotic System-based MFO (CSMFO) by optimizing the weights of U-Net. The significance of the implemented model is confirmed over a comparative evaluation with the state-of-the-art models. Specifically, the proposed CSMFO-FUCNN attained 98.45% of accuracy, 98.63% of sensitivity, 98.98% of specificity, and 98.98% of precision.

Publisher

IOS Press

Reference31 articles.

1. Zoonotic origins of human coronaviruses;Ye;Int J Biol Sci,2020

2. The Human Coronavirus Disease COVID-19: Its Origin, Characteristics, and Insights into Potential Drugs and Its Mechanisms;Alanagreh;Pathogens

3. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses;Shereen;J Adv Res,2020

4. WHO Declares COVID-19 a Pandemic;Cucinotta;Acta Biomed,2020

5. Review of Coronavirus Disease-(COVID-19);Singhal;Indian J Pediatr,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3