Assessing the multivariate distributional accuracy of common imputation methods

Author:

Thurow Maria12,Dumpert Florian3,Ramosaj Burim1,Pauly Markus12

Affiliation:

1. Department of Statistics, TU Dortmund University, Dortmund, Germany

2. Research Center Trustworthy Data Science and Security, University Alliance Ruhr, Dortmund, Germany

3. Federal Statistical Office of Germany (Destatis), Wiesbaden, Germany

Abstract

Imputation methods are popular tools that allow for a wide range of subsequent analyses on complete data sets. However, in order for these analyses to be trustworthy, it is important that the imputation procedure reflects the true distribution of the unobserved data sufficiently well. This raises the question how well different imputation methods can reproduce multivariate correlations, associations or even the entire multivariate distribution. The paper gives first answers to this question by means of an extensive comparative simulation study. In particular, we evaluate the multivariate distributional accuracy for six state-of-the art imputation algorithms with respect to different measures and give practical recommendations.

Publisher

IOS Press

Reference27 articles.

1. Chambers R. Evaluation Criteria for Editing and Imputation in Euredit. In: Statistical Data Editing. vol. 3; United Nations Statistical Commission and United Nations Economic Commission for Europe; 2006.

2. The impact of imputation quality on machine learning classifiers for datasets with missing values

3. Imputing missings in official statistics for general tasks – our vote for distributional accuracy;Thurow;Statistical Journal of the IAOS.,2021

4. Nonparametric Multiple Imputation for Questionnaires with Individual Skip Patterns and Constraints: The Case of Income Imputation in the National Educational Panel Study;Aßmann;Sociological Methods & Research.,2017

5. Split Questionnaire Designs for Online Surveys: The Impact of Module Construction on Imputation Quality;Axenfeld;Journal of Survey Statistics and Methodology.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3