Effect of Laser Power on the Deposition of Alloy 718 Powder on Alumina Substrate Using Laser Directed Energy Deposition: A Single-Track Study

Author:

Ratnala Dilipkumar Choudary1ORCID,Hanning Fabian1ORCID,Andersson Joel1ORCID,Joshi Shrikant1ORCID

Affiliation:

1. Department of Engineering Science, University West, Trollhättan, Sweden

Abstract

Welding or brazing of metals to ceramics often leads to failures under aggressive conditions due to abrupt changes in physical, chemical, and thermal properties at the metal-ceramic interface. Metal-ceramic Functional Graded Materials (FGMs) replace the strict interface with a gradual transition of composition and properties, which protects the material from failures. The powder-blown Laser-Directed Energy Deposition (DED-LB) is one of the widely known Additive Manufacturing (AM) processes that offer unique features like developing FGMs and multi-material structures. Various studies have been conducted to process metal-ceramic FGMs using the DED-LB process but significant differences in thermal properties, varying laser-material interactions, and the possibility of formation of complex reaction products make the processing of metal-ceramic FGMs challenging. This study aims to understand the effect of laser power on a ceramic substrate, and its interaction with a metal powder introduced in the melt pool. A single track of nickel-based superalloy Alloy 718 powder was deposited on an Alumina substrate with different laser powers. The deposition was performed with and without substrate pre-heat to understand the effect of pre-treatment on deposition. Metallographic analysis was performed to reveal the microstructure of the resolidified metal mixed ceramic region.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3