Hyperparameter tuning for multi-label classification of feedbacks in online courses

Author:

Ruiz Alonso Dorian1,Zepeda Cortés Claudia1,Castillo Zacatelco Hilda1,Carballido Carranza José Luis1

Affiliation:

1. Facultad de Ciencias de la Computación, Benemérita Universidad Autónoma de Puebla

Abstract

In this work, we propose the extension of a methodology for the multi-label classification of feedback according to the Hattie and Timperley feedback model, incorporating a hyperparameter tuning stage. It is analyzed whether the incorporation of the hyperparameter tuning stage prior to the execution of the algorithms support vector machines, random forest and multi-label k-nearest neighbors, improves the performance metrics of multi-label classifiers that automatically locate the feedback generated by a teacher to the activities sent by students in online courses on the Blackboard platform at the task, process, regulation, praise and other levels proposed in the feedback model by Hattie and Timperley. The grid search strategy is used to refine the hyperparameters of each algorithm. The results show that the adjustment of the hyperparameters improves the performance metrics for the data set used.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference19 articles.

1. How good is my feedback? a content analysis of written feedback;Cavalcanti;In proceedings of the Tenth International Conference on Learning Analytics and Knowledge,2020

2. Stealing hyperparameters in machine learning;Wang;In 2018 IEEE Symposium on Security and Privacy,2018

3. Wisniewski B. , Zeiger K. and Hattie J. , The power of feedback revisted: A meta-analysis of educational feedback research, Frontiers in Psychology, 2020.

4. Exploring feedback interactions in online learning environments for secondary education;Aguerrebere;In Proceedings of Latin America Workshop on Learn Analytics,2018

5. Fui C.S. and Lian L.H. , The effect of computerized feedback on students’ misconceptions in algebraic expression, Pertanika Journal of Social Sciences and Humanities 26(03) (2018).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online course feedback comments clustering via document similarity;Revista de Tecnología y Educación;2024-06-30

2. Application of Feature Weighted KNN Classification Algorithm in Professional Curriculum Talent Training;Lecture Notes on Data Engineering and Communications Technologies;2024

3. Towards Explainable Prediction Feedback Messages Using BERT;International Journal of Artificial Intelligence in Education;2023-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3