Shaft alignment for rotary machines using wireless power transfer process: Foundations and design approach

Author:

Aomar Lyes12ORCID,Ikhelef Nabil21,Taibi Ahmed2

Affiliation:

1. , University of Jijel, , Algeria

2. L2EI Laboratory, University of Jijel, , Algeria

Abstract

The aim of this paper is to present the fundamentals of an original method of shaft alignment for rotating machines based on the principle of wireless power transfer (WPT) process. WPT alignment of shafts in rotating machinery is simple and more accurate than existing methods (conventional mechanical methods or Laser-optical method) and can result in reduced power consumption and minimized mean time between failures. Shaft alignment is an important factor in the proper functioning and longevity of machinery. Proper shaft alignment ensures that the rotating shafts of a machine are in a straight line and rotate on the same axis. This contributes to reducing the wear and tear on the bearings and other components of the machine, leading to improved reliability and longer service life. A high precision WPT alignment system has been designed with the primary coil placed in the driver machine, as an electrical motor, and the secondary coil placed in the driven machine, as a pump. The calculation of the magnetic interactions between both coils (primary and secondary coils), in particular the mutual inductance and coupling coefficient, perfectly explains deviations in the shaft (angular misalignment and parallel offset) and aligns entirely with measurement results, with a difference of approximately 4%. This new alignment method with magnetic interactions has proven effective in designing and implementing actual shaft alignment. WPT alignment offers precise shaft alignment tools for proper alignment of shafts and reduces troubleshooting issues.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3