Network attack classification using LSTM with XGBoost feature selection

Author:

Poornima R.1,Elangovan Mohanraj2,Nagarajan G.3

Affiliation:

1. Department of Computer Science and Engineering, K.S. Rangasamy College of Technology, Tamil Nadu, India

2. Department of Computer Science and Engineering, K.S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, India

3. Department of Information Technology, KSR College of Engineering, Tamil Nadu, India

Abstract

The evolving new and modern technologies raise the risks in the network which will be affected by several attacks and thus give rise to developing efficient network attack detection and classification methods. Here in this article for predicting and classifying the network attacks, the LSTM neural network with XGBoost is suggested in which the NSL-KDD dataset was utilized to train the LSTM in the study. In the beginning, the unnecessary data and the noisy data will be eliminated using the dataset and the feature subset with the most compelling features will be selected using the feature selection. By utilizing the essential data, the proposed system will be trained and the training parameter values will be modified for maximizing the functionality of the proposed system. Then, the result of the proposed system will be evaluated with some of the existing machine learning and deep learning algorithms such as SVM, LR, RF, DNN, and CNN with the performance metrics like Accuracy, F1 score, Recall, and Precision. It was found that the proposed model outperforms better than the other algorithms as this model is trained with the most important features and due to this, the training time and overfitting of the learning model was reduced thereby increasing the model effectiveness

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3