Demand side management using ant colony optimization algorithm in renewable energy integrated smart grid

Author:

Yadav Ravindra Kumar1,Bhadoria Vikas Singh2,Hrisheekesha P.N.3

Affiliation:

1. Galgotias College of Engineering and Technology, Greater Noida, India

2. Industry Integration Cell, Shri Vishwakarma Skill University, Palwal, Haryana, India

3. Campus Director, Chandigarh Group of Colleges, Landran, Panjab, India

Abstract

The increasing demand for electrical energy is a result of advancing technologies and changing lifestyles worldwide. Meeting this escalating energy need poses a substantial challenge, especially the difficulty in constructing new conventional power plants due to limited fossil fuel resources. To address this, demand-side management (DSM) in smart grid (SG), integrated with solar photovoltaic energy (SPE) have emerged as a crucial tool for effectively managing electricity demand, ensuring flexibility and reliability. DSM achieves optimal electricity utilization by rescheduling the operation schedules of consumer appliances and carefully adjusting their demand profiles. Integrating DSM into a smart grid framework is highly advantageous for the power industry’s pursuit of sustainable energy goals. While various heuristic-based optimization techniques have been employed for DSM, the focus on SPE has been limited to small-scale residential loads. This study utilizes the Ant Colony Optimization (ACO) algorithm to tackle a day ahead DSM minimization problem, considering SPE in areas with large number of appliances. The DSM minimization problem falls into the category of discrete combinatorial problems, making it well-suited for ACO optimization. The self-healing, self-protection, and self-organizing attributes of ACO make it particularly effective for DSM solutions. Residential, commercial, and industrial loads, with and without SPE integration, are considered to demonstrate the efficacy of the proposed ACO algorithm. Simulation results are compared with other studies in the literature, including Evolutionary Algorithm (EA), Moth Flame Optimization (MFO), and Bacterial Foraging Optimization (BFO), in terms of reducing consumer’s cost of energy (CCE) and utility peak load (UPL). The findings indicate that the proposed ACO algorithm outperforms the other algorithms considered in the current context.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3