An power and bound-aware optimised scheduler for virtualized cloud computing

Author:

Senthil Kumar K.1,Anandamurugan S.2

Affiliation:

1. Department of Information Technology, K.S. Rangasamy College of Technology, Tiruchengodu, Tamilnadu, India

2. Department of Information Technology, Kongu Engineering College, Erode, Tamilnadu, India

Abstract

Cloud computing has become a crucial paradigm for large-scale data-intensive applications, but it also brings challenges like energy consumption, execution time, heat, and operational costs. Improving workflow scheduling in cloud environments can address these issues and optimize resource utilization, leading to significant ecological and financial benefits. As data centres and networks continue to expand globally, efficient scheduling becomes even more critical for achieving better performance and sustainability in cloud computing. Schedulers mindful of energy and deadlines will assign resources to jobs in a way that consumes the least energy while upholding the task’s quality standards. Because this scheduling involves a Non-deterministic Polynomial (NP)-hard problem, the schedulers are able to minimize complexity by utilizing metaheuristic techniques. This work has developed methods like Artificial Bee Colony (ABC), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) for optimizing the scheduler. Local search and exploration are respectably supported by heuristic algorithms. The algorithm’s exploration and exploitation features must also be balanced. The primary objective is to optimize computation-intensive workflows in a way that minimizes both energy consumption and execution time while maximizing throughput. This optimization should be achieved without compromising the Quality of Service (QoS) guarantee provided to users. The focus is on striking a balance between energy efficiency and performance to enhance the overall efficiency and cost-effectiveness of cloud computing environments. According to the simulation findings, the suggested ABC has a higher guarantee ratio for 5000 jobs when compared to the GA, PSO, GA with the longest processing time, and GA with the lowest processing time, by 7.14 percent, 4.7 percent, 3.5 percent, and 2.3 percent, respectively. It is observed that the proposed ABC possesses qualities like high flexibility, great robustness, and quick convergence leading to good performance.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference31 articles.

1. A comprehensive review of swarm optimization algorithms;Ab Wahab;PLoS One,2015

2. A dynamic VM provisioning and de-provisioning based cost-efficient deadline-aware scheduling algorithm for Big Data workflow applications in a cloud environment;Ahmad;Cluster Computing,2021

3. An Enhanced Task Scheduling Algorithm on Cloud Computing Environment;Alkhashai;International Journal of Grid and Distributed Computing,2016

4. A survey on energy-aware scheduling techniques in cloud computing environment;Garg;International Journal of Computer Science and Information Security,2016

5. Deadline Aware Energy-Efficient Task Scheduling Model for a Virtualized Server;Garg;SN Computer Science,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3