ω-Groundedness of argumentation and completeness of grounded dialectical proof procedures

Author:

Dung Phan Minh1,Thang Phan Minh2,Pooksook Jiraporn3

Affiliation:

1. Department of ICT, Asian Institute of Technology, Thailand

2. International College of Burapha University, Burapha University, Thailand

3. Department of Electrical and Computer Engineering, Naresuan University, Thailand

Abstract

Dialectical proof procedures in assumption-based argumentation are in general sound but not complete with respect to both the credulous and skeptical semantics (due to non-terminating loops). This raises the question of whether we could describe exactly what such procedures compute. In a previous paper, we introduce infinite arguments to represent possibly non-terminating computations and present dialectical proof procedures that are both sound and complete with respect to the credulous semantics of assumption-based argumentation with infinite arguments. In this paper, we study whether and under what conditions dialectical proof procedures are both sound and complete with respect to the grounded semantics of assumption-based argumentation with infinite arguments. We introduce the class of ω-grounded and finitary-defensible argumentation frameworks and show that finitary assumption-based argumentation is ω-grounded and finitary-defensible. We then present dialectical procedures that are sound and complete wrt finitary assumption-based argumentation.

Publisher

IOS Press

Reference34 articles.

1. Logical argumentation by dynamic proof systems;Arieli;Theoretical Computer Science,2019

2. A. Arioua and M. Croitoru, A dialectical proof theory for universal acceptance in coherent logic-based argumentation frameworks, in: Proceedings of the 22nd European Conference on Artificial Intelligence, ECAI 2016, 2016, pp. 55–63, http://liris.cnrs.fr/~aarioua/papers/ECAI2016.pdf.

3. Infinite Argumentation Frameworks

4. F. Belardinelli, D. Grossi and N. Maudet, Formal analysis of dialogues on infinite argumentation frameworks, in: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, AAAI Press, 2015, pp. 861–867. ISBN 9781577357384.

5. Multiset theory;Blizard;Notre Dame Journal of Formal Logic,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3