A systematic review on privacy-preserving distributed data mining

Author:

Sun Chang1ORCID,Ippel Lianne1ORCID,Dekker Andre2ORCID,Dumontier Michel1ORCID,van Soest Johan3ORCID

Affiliation:

1. Institute of Data Science, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.

2. Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.

3. Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands and Brightlands Institute of Smart Society (BISS), Faculty of Science and Engineering, Maastricht University, Maastricht/Heerlen, The Netherlands.

Abstract

Combining and analysing sensitive data from multiple sources offers considerable potential for knowledge discovery. However, there are a number of issues that pose problems for such analyses, including technical barriers, privacy restrictions, security concerns, and trust issues. Privacy-preserving distributed data mining techniques (PPDDM) aim to overcome these challenges by extracting knowledge from partitioned data while minimizing the release of sensitive information. This paper reports the results and findings of a systematic review of PPDDM techniques from 231 scientific articles published in the past 20 years. We summarize the state of the art, compare the problems they address, and identify the outstanding challenges in the field. This review identifies the consequence of the lack of standard criteria to evaluate new PPDDM methods and proposes comprehensive evaluation criteria with 10 key factors. We discuss the ambiguous definitions of privacy and confusion between privacy and security in the field, and provide suggestions of how to make a clear and applicable privacy description for new PPDDM techniques. The findings from our review enhance the understanding of the challenges of applying theoretical PPDDM methods to real-life use cases, and the importance of involving legal-ethical and social experts in implementing PPDDM methods. This comprehensive review will serve as a helpful guide to past research and future opportunities in the area of PPDDM.

Publisher

IOS Press

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3