Ontology summit 2020 communiqué: Knowledge graphs

Author:

Baclawski Ken1,Bennett Michael2,Berg-Cross Gary3,Schneider Todd4,Sharma Ravi5,Singer Janet6,Sriram Ram D.7

Affiliation:

1. Northeastern University, Boston, MA, USA. E-mail: Ken@Baclawski.com

2. Hypercube Limited, London, UK. E-mail: mbennett@hypercube.co.uk

3. ESIP Semantic harmonization Co-Lead, Severna Park, MD, USA. E-mail: gbergcross@gmail.com

4. Engineering Semantics, Fairfax, VA, USA. E-mail: tsch@engsem.net

5. Senior Enterprise Architect, Elk Grove, CA, USA. E-mail: drravisharma@gmail.com

6. INCOSE, Scotts Valley, CA, USA. E-mail: jsinger@soe.ucsc.edu

7. National Institute of Standards & Technology, Gaithersburg, MD, USA. E-mail: ramdsriram@gmail.com

Abstract

An increasing amount of data is now available from public and private sources. Furthermore, the types, formats, and number of sources of data are also increasing. Techniques for extracting, storing, processing, and analyzing such data have been developed in the last few years for managing this bewildering variety based on a structure called a knowledge graph. Industry has devoted a great deal of effort to the development of knowledge graphs, and knowledge graphs are now critical to the functions of intelligent virtual assistants such as Siri, Alexa, and Google Assistant. The goal of the Ontology Summit 2020 was to understand not only what knowledge graphs are but also where they originated, why they are so popular, the current issues, and their future prospects. The summit sessions examined many examples of knowledge graphs and surveyed the relevant standards that exist and are in development for knowledge graphs. The purpose of this Communiqué is to summarize our understanding from the Summit in order to foster research and development of knowledge graphs.

Publisher

IOS Press

Subject

Linguistics and Language,Language and Linguistics,General Computer Science

Reference15 articles.

1. Baclawski, K., Bennett, M., Berg-Cross, G., Casanave, C., Fritzsche, D., Ring, J., Schneider, T., Sharma, R., Singer, J., Sowa, J., Sriram, R.D., Westerinen, A. & Whitten, D. (2018). Ontology summit 2018 communiqué: Contexts in context. J. Applied Ontology, IOS Press.

2. Baclawski, K., Futrelle, R., Fridman, N. & Pescitelli, M. (1993a). Database techniques for biological materials & methods. In First Int. Conf. Intell. Sys. Molecular Biology (pp. 21–28).

3. Baclawski, K., Futrelle, R., Hafner, C., Pescitelli, M., Fridman, N., Li, B. & Zou, C. (1993b). Data/knowledge bases for biological papers and techniques. In Proc. Sympos. Adv. Data Management for the Scientist and Engineer (pp. 23–28).

4. Dong, X., He, X., Kan, A., Li, X., Liang, Y., Ma, J., Xu, Y., Zhang, C., Zhao, T., Saldana, G., Deshpande, S., Manduca, A., Ren, J., Singh, S., Xiao, F., Chang, H.-S., Karamanolakis, G., Mao, Y., Wang, Y., Faloutsos, C., McCallum, A. & Han, J. (2020). AutoKnow: Self-driving knowledge collection for products of thousands of types. In SigKDD 2020.

5. Linked data quality of DBPedia, Freebase, OpenCyc, Wikidata, and YAGO;Färber;Semantic Web Journal,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3