Fractional diffusion for Fokker–Planck equation with heavy tail equilibrium: An à la Koch spectral method in any dimension

Author:

Dechicha Dahmane1,Puel Marjolaine2

Affiliation:

1. Laboratoire J.-A. Dieudonné, Université Côte d’Azur, UMR 7351, Parc Valrose, 06108 Nice Cedex 02, France

2. Laboratoire de recherche AGM, CY Cergy Paris Université, UMR CNRS 8088, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France

Abstract

In this paper, we extend the spectral method developed (Dechicha and Puel (2023)) to any dimension d ⩾ 1, in order to construct an eigen-solution for the Fokker–Planck operator with heavy tail equilibria, of the form ( 1 + | v | 2 ) − β 2 , in the range β ∈ ] d , d + 4 [. The method developed in dimension 1 was inspired by the work of H. Koch on nonlinear KdV equation (Nonlinearity 28 (2015) 545). The strategy in this paper is the same as in dimension 1 but the tools are different, since dimension 1 was based on ODE methods. As a direct consequence of our construction, we obtain the fractional diffusion limit for the kinetic Fokker–Planck equation, for the correct density ρ : = ∫ R d f d v, with a fractional Laplacian κ ( − Δ ) β − d + 2 6 and a positive diffusion coefficient κ.

Publisher

IOS Press

Subject

General Mathematics

Reference19 articles.

1. Diffusion approximation and computation of the critical size;Bardos;Transactions of the american mathematical society,1984

2. Boundary layers and homogenization of transport processes;Bensoussan;Publications of the Research Institute for Mathematical Sciences,1979

3. Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities;Bonforte;Proceedings of the National Academy of Sciences,2010

4. Fractional hypocoercivity;Bouin;Communications in Mathematical Physics,2022

5. Quantitative fluid approximation in transport theory: A unified approach;Bouin;Probability and Mathematical Physics,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3